

Failsafe mechanism (Force sensors)

1. Read Piezo resistive sensors for force reading above a certain threshold

2. If 1 of 2 reads below threshold, continue loop

3. If 0 0f 2 read below threshold, continue loop

4. If 2 of 2 read below threshold, stop loop, enter Error deceleration loop

Acceleration throttle control

1. Obtain current speed if possible (in RPMs)

a. If not use last throttle data send to ESC to estimate speed

2. Read user input value for speed from app connection

3. Divide difference between input speed and current speed

4. Sequentially write increasing or decreasing throttle commands to the ESC

a. Space throttle commands by a delay set by acceleration parameters

Error “Watchdog” loop to enter deceleration

1. Deceleration loop entered

2. Obtain current speed if possible (in RPMs)

a. If not use last throttle data send to ESC to estimate speed

b. Do not allow entrance to loop if speed is 0

3. Sequentially send deceleration commands to the ESC down to 0 speed

4. Flash LEDs red/yellow

Front, Rear, Right, Left, LED control

1. Read user input from app connection

2. Send PWM to MOSFETs to control respective LED strips or send to NeoPixels

Connectivity loss failsafe

1. Continuously check connection

2. If connection is good, allow all loops to proceed

3. If connection is bad or broken, enter Error deceleration loop

Base cases for deceleration error loop

ESC detects low battery and enters its own braking, separate from microcontroller

Broken connection from app

User enters error loop through app command

2 of 2 Piezo resistive sensors read below threshold, indicating rider has fallen off

Initialization of variables

Variables for speed/throttle

Variables for LED color

Declare ESC Servo object

Variables for sensors

void setup ()

Attach ESC to correct pin

Attach LEDs to correct pins

Start Serial for debugging

void loop () (main loop)

Call startup function if all conditions are met

 Set speed to 0

Call run loop

 run loop loops within itself, only exits if base/error conditions are met

Run loop

Run forever

Read all sensor data

Read all throttle/speed data

Read throttle command from app, reassign to desired speed variable every loop

 Calculate difference between current speed and desired speed

 Write first step above/below current speed (fixed step size)

Delay fixed time period (probably 50-200ms)

If any bases cases are met (sensors, connection, user command)

 Call deceleration error loop

 break (Will break to main loop, which will loop around to startup function)

Startup

While 1 > 0

Check to make sure all base cases are ok and board is ready to go

 Connection

 Kill switch not flipped

 Sensors read ok

If yes, set speed to 0, cool LED sequence proceeds to run loop

If no, continue looping

Delay 500ms

Deceleration

Called by run loop with 1 arg passed by value, last sent speed

While speed > 0

Read last sent speed

 Calculate difference between current speed and 0

 Write first step below current speed (use fixed step size)

Store this last sent speed, used by loop for next write to ESC

Delay fixed time period (probably 50-200ms)

Break to run loop (which will then break to main loop) after speed goes to 0

